Complementation by detached parts of GGCC-specific DNA methyltransferases.

نویسندگان

  • G Pósfai
  • S C Kim
  • L Szilák
  • A Kovács
  • P Venetianer
چکیده

Individually inactive N- and C-terminal fragments of the m5C-methyltransferase M.BspRI can complement each other resulting in specific, in vivo methylation of the DNA. This was shown by cloning the coding regions for N- and C-terminal parts of the enzyme in compatible plasmids and co-transforming them into E.coli cells. The enzyme could be detached at several different sites, producing either non-overlapping or partially overlapping fragments capable of complementation. Reconstitution of the active methyltransferase from inactive fragments was demonstrated in vitro, as well. Another GGCC-specific methyltransferase, M.BsuRI, showed a similar complementation phenomenon. Moreover, interspecies complementation was observed between appropriate fragments of the two closely related enzymes M.BspRI and M.BsuRI. Fragments of structurally and functionally more different methyltransferases were unable to complement each other.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evolutionary transitions to new DNA methyltransferases through target site expansion and shrinkage

DNA-binding and modifying proteins show high specificity but also exhibit a certain level of promiscuity. Such latent promiscuous activities comprise the starting points for new protein functions, but this hypothesis presents a paradox: a new activity can only evolve if it already exists. How then, do novel activities evolve? DNA methyltransferases, for example, are highly divergent in their ta...

متن کامل

Footprint analysis of the bsp RI DNA methyltransferase-DNA interaction.

The interaction between the GGCC-specific Bsp RI DNA methyltransferase (M. Bsp RI) and substrate DNA was studied with footprinting techniques using a DNA fragment that was unmodified on both strands. Footprinting with DNase I revealed an approximately 14 bp protected region. Footprinting with dimethylsulfate detected major groove interactions with the guanine bases of the recognition sequence. ...

متن کامل

DNA methyltransferases of the cyanobacterium Anabaena PCC 7120.

From the characterization of enzyme activities and the analysis of genomic sequences, the complement of DNA methyltransferases (MTases) possessed by the cyanobacterium ANABAENA PCC 7120 has been deduced. ANABAENA has nine DNA MTases. Four are associated with Type II restriction enzymes (AVAI, AVAII, AVAIII and the newly recognized inactive AVAIV), and five are not. Of the latter, four may be cl...

متن کامل

The role and importance of DNA methylation in spermatogenesis process

Background: DNA methylation is one of the epigenetic marks that are created by de novo DNA methylation and be maintained through cell division. This process is catalyzed by DNA methyltransferases. DNA methylation establishment in germ line is important, since they have the potential to regulate gene expression in offspring and improper DNA methylation patterns in germ lines has serious conseque...

متن کامل

Altering the sequence specificity of HaeIII methyltransferase by directed evolution using in vitro compartmentalization.

Engineering the specificity of DNA-modifying enzymes has proven extremely challenging, as sequence recognition by these enzymes is poorly understood. Here we used directed evolution to generate a variant of HaeIII methyltransferase that efficiently methylates a novel target site. M.HaeIII methylates the internal cytosine of the canonical sequence GGCC, but there is promiscuous methylation of a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nucleic acids research

دوره 19 18  شماره 

صفحات  -

تاریخ انتشار 1991